**TMS 2005 --- Diffusion Symposium** 

# **Characterization of Internal Oxidation**

### Yali Li<sup>1</sup> and John E. Morral<sup>2</sup>

<sup>1</sup>University of Connecticut, Storrs CT 06269 USA
<sup>2</sup>Ohio State University, Columbus OH 43210 USA

# **Internal Oxidation Characterization**



- Phases present --- XRD
- Oxide fraction profile --- Image analysis
- **Concentration profile --- EDX**
- **\*** Thickness of internal oxidation region

**Simulation results for saturated case in literature :** 



\* E. K. Ohriner and J. E. Morral, Scripta Metallurgica, 13 (1979) 7.

#### **Experimental results in literature:**



Fe-Cr alloys internally oxidized at 1000 °C for 20 hours with *Po*<sub>2</sub>=8.7×10<sup>-17</sup>atm.\* \* O. Ahmed and D. J. Yong, Electrochemical Society Proceedings, 38 (1999) 77. <sup>4</sup>

#### Cu-7% Ni internally oxidized at 900° C in Rhines Pack





**XRD** patterns

### **Image analysis: oxide area fraction profile**





#### grey scale

#### binary mode

#### NiO area fraction versus distance



Cu-7% Ni alloys internally oxidized at 900° C for 1 hour

#### **Simulation results: saturated case**



**Simulation results: unsaturated case** 

Effect of  $\beta$  on relative oxide fraction profiles



### **Summary:**

- When alloys are saturated with oxygen, oxide mole fraction decreases asymptotically to zero and the position of moving boundary cannot be defined.
- When alloys are unsaturated with oxygen, the moving boundary between internal oxidation region and unoxidized region is well defined.

#### The classic model:



### **Assumptions:**

- All the solute B is consumed to form BO<sub>v</sub> in the internal oxidation region.
- The concentrations of dissolved B and O at the moving boundary are zero.

\* C. Wagner, Z. Electrochem, 63 (1959) 772.

#### The classic model:



#### **Experimental results in literature:**



\* D. L. Corn *et al.* Oxidation of Metals, 35 (1991) 139

**Concentration profiles under local equilibrium conditions** 



Matrix concentration profile, C<sup>a</sup>, is continuous in slope and value.
Average profile, C<sup>α+β</sup>, and matrix profile, C<sup>α</sup>, meet at the moving boundary.

distance

\* W.J. Boettinger *et al.* Acta Metall.Mater. 48 (2000) 481-492. \* J. E. Morral and H. Chen, Scripta Mater. 43 (2000) 699-703.

#### The classic model versus Local equilibrium model



#### **DICTRA** simulation results: saturated case



#### Concentration profiles of Cu-10% Ni alloys oxidized at 950 °C



#### **Error Function Model simulation results: unsaturated case**



### **Summary:**

- Concentration profiles in the classic model are in error because they are not supported by experimental results in the literature or in this study and have no theoretic basis.
- When K = 0, there is no long-range diffusion of solute B, thus the enrichment phenomena proposed by the classic model doesn't occur.
- Near the boundary between oxidized and unoxidized region, matrix solute concentration approaches initial solute concentration rather than zero as assumed by the classic model.

# **Thickness of Internal Oxidation Region**

#### Cu-10%Ni alloys oxidized at 950 °C



## **Thickness of Internal Oxidation Region**



# **Conclusions (1)**

For saturated cases:

- (a) Because oxide fraction decreased asymptotically to zero, there
   was no distinct boundary between the oxidized and
   unoxidized regions.
- (b) For  $D_0 >> D_{B_1}$  when oxide fraction approaches zero, matrix solute concentration is close to initial solute concentration.
- (c) DICTRA predicted internal oxidation under local equilibrium for  $0.03 < \beta < 0.22$  for alloys saturated with oxygen.

## **Conclusions (2)**

For unsaturated cases:

- (a) The moving boundary between internal oxidation region and unoxidized region is well defined.
- (b) For  $D_0 >> D_B$ , solute concentration in matrix at the moving boundary is close to initial solute concentration.
- (c) When  $\beta \to 1$ , Error Function Model can be used to model internal oxidation for unsaturated alloys.

# Acknowledgements

- Major advisor: Dr. John E. Morral
- Dr. Ronald N. Caron at Olin Corporation
- Dr. Carelyn E. Campbell at NIST
- Dr. Caian Qiu at Ques Tek
- **Where Warssight Constants UConn staff: Mary Anton, Fred Massicotte**
- All members of UConn diffusion group
- National Science Foundation

### **Applications**

- Design alloys with improved oxidation resistant
- Design intermetallic alloys capable of protective scale formation (e.g. Al<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>)\*
- Synthesize functional ceramic surface structures (e.g. nitride and carbide catalysts Co<sub>3</sub>Mo<sub>3</sub>N or Co<sub>3</sub>Mo<sub>3</sub>C) by gas-metal reactions (oxidation, nitridation, carburization, etc.)\*

### **Approach: Experimental studies**

**Rhines Pack: Cu (shot) + Cu<sub>2</sub>O (powder) in a stainless steel tube** 



Sample size : 10×10 ×20 (mm)

The tube was welded at the ends in argon atmosphere

### **Experimental results: Optical microstructures**

Two Cu sources for the new Cu layer:

(1) The mixture of Cu and Cu<sub>2</sub>O in a Rhines Pack



#### (2) Internally oxidized Cu-Ni alloys

Ni : 6.59 cm<sup>3</sup>/mole NiO: 11.15 cm<sup>3</sup>/mole

### **Experimental results: EDX**

#### **Concentration profiles of Cu-10% Ni alloys oxidized at 950° C**



Sestimated position of oxidation frontier

### **Experimental results: EDX**

### New Cu layer at the surface:

| 0 |    | $K\alpha_1$                                          | Kβ <sub>1</sub> | $L\alpha_{l}$ | $Leta_l$ |  |  |
|---|----|------------------------------------------------------|-----------------|---------------|----------|--|--|
| - | Cu | 8.046                                                | 8.904           | 0.93          | 0.95     |  |  |
|   | Ni | 7.477                                                | 8.263           | 0.851         | 0.863    |  |  |
|   |    | Quantitative results:<br>Cu 99.69 wt%<br>Ni 0.31 wt% |                 |               |          |  |  |
|   |    |                                                      |                 |               |          |  |  |

### **Experimental results: Phase identification (XRD)**

#### XRD patterns of Cu-20%Ni – before oxidation



2 theta

### **Experimental results: Phase identification (XRD)**

#### XRD patterns of Cu-20%Ni – after oxidation



32

### **Experimental results: Phase identification (XRD)**

### NiO crystal structure:



### **Experimental results: EDX**

#### Concentration profiles of Cu-Ni alloys oxidized at 950° C for 3 hours



**Estimated position of oxidation frontier** 

### **Background: Existing models of internal oxidation**



- (a) C. Wagner, Z. Electrochem, 63 (1959) 772.
- (b) J. A. Nesbitt, Oxidation of Metals, 44 (1995) 309.
- (c) G. Bohm et al. Acta Metall.,12 (1964) 641

### **Background: Venn diagram**



The classic mode =  $(A \cap D) \cup (A \cap B)$ Local equilibrium model =  $D^C$ 

### **Background: Local equilibrium assumptions**



- The compositions and amount of each phase are given by the local average composition, the phase diagram, and the lever rule.
- Nucleation and growth rate of precipitates are so rapid that only long range diffusion need be considered.

### **Simulation results: EFM**

### **Diffusion paths:**



=

Simulation conditions:  $K = 9.6 \times 10^{-5}$ ,

=

### **Simulation results: DICTRA**

#### **Diffusion path:**



=

=

Simulation conditions:  $K = 9.6 \times 10^{-5}$ ,

=

### **DICTRA simulation**

### An ideal A-B-O solid solution system



- Three elements: A - solvent B - solute
- **O** fast diffuser (**D**<sub>O</sub>>>**D**<sub>B</sub>)

Two phases: \* matrix phase \* line compound (BO)

### **Simulation results: DICTRA**

#### Effect of $C_B^0$ on oxide mole fraction:



Simulation conditions:  $K = 9.6 \times 10^{-5}$ , = \_\_\_\_\_\_41

### **Simulation results**

### **Comparison of EFM and DICTRA**

|                              | EFM                                                                       | DICTRA                                 |  |
|------------------------------|---------------------------------------------------------------------------|----------------------------------------|--|
| Application                  | Unsaturated case                                                          | Saturated case                         |  |
| Boundary conditions          | $C_o^s = \text{Constant}$<br>$J_B = -D_B \frac{\partial C_B}{\partial x}$ | $C_o^s = \text{Constant}$<br>$J_B = 0$ |  |
| [D <sup>eff</sup> ]          | Constant                                                                  | Concentration dependent                |  |
| Phase boundary               | Linear                                                                    | $C_{B}C_{o}=K$                         |  |
| β                            | $\beta \rightarrow 1$                                                     | $0.03 < \beta < 0.55$                  |  |
| Local equilibrium conditions | Satisfied                                                                 | Satisfied                              |  |

### **Interesting diffusion paths**



Gibbs Phase law: f = c - p + 2

43